

2025

https://github.com/jpgpi250

26-6-2025

Block DNS over HTTPS (DoH), using pfsense

1. About this manual. .. 1

2. DoH lists. .. 1

3. Pfsense configuration. ... 2

1. Defining the firewall aliases URLs.. 3

2. Defining the DoH block rules. .. 3

3. Defining the exception aliases. .. 5

4. Defining the exception rules. .. 7

4. List Updates. .. 9

5. Sqlite3 database. ... 9

1. Tables... 10

2. Query examples ... 11

6. Network control, using DNS entries. ... 13

1. Firefox canary domain. .. 13

2. iCloud Private Relay. .. 13

7. DoH response policy zone. .. 15

8. Cloudflare addresses. .. 15

9. Limiting the number of exceptions. .. 16

10. CIDR (network) Exceptions. ... 16

11. DOH Suricata rules... 18

12. Adblock Plus. ... 20

13. Change Log. ... 20

1. About this manual.

If you are reading this document, using Adobe Reader, you may click on a hyperlink to

content in this document. Use the combination <Alt> <left arrow> to return to the previous

location.

"Back" and "Forward" buttons can also be added to the toolbar. If you right-click on the tool

bar, under "Page Navigation", they are referred to as "Previous View" and "Next View".

This document is hosted on GitHub, you can open the document (pdf), using this link.

2. DoH lists.

DNS over HTTPS (DoH) is a protocol for performing remote Domain Name System (DNS)

resolution via the HTTPS protocol. You can find a lot of detail on wikipedia.

This document describes a method to prevent (block) clients on your network to use DoH.

https://github.com/jpgpi250/piholemanual/blob/master/doc/Block%20DOH%20with%20pfsense.pdf
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/DNS_over_HTTPS

In short, we will simply block all the IP’s of DoH DNS servers on the firewall. Since DoH

servers come and go all the time, it is hard to keep track of all DoH servers. Several

contributers dedicate time to creating lists with known DoH servers, unfortunately, most of

these lists are incomplete or not maintained.

I’ve searched and found several lists, containing references to DoH servers:

- https://raw.githubusercontent.com/bambenek/block-doh/master/doh-hosts.txt

- https://raw.githubusercontent.com/Sekhan/TheGreatWall/master/TheGreatWall.txt

- https://raw.githubusercontent.com/oneoffdallas/dohservers/master/list.txt

- https://raw.githubusercontent.com/vysecurity/DoH-Servers/master/README.md

- https://raw.githubusercontent.com/jameshas/Public-DoH-Lists/main/lists/doh_domains_plain.txt

- https://raw.githubusercontent.com/flo-wer/doh-list/master/domains.txt

- https://raw.githubusercontent.com/wiki/curl/curl/DNS-over-HTTPS.md

- https://download.dnscrypt.info/dnscrypt-resolvers/json/public-resolvers.json
- https://dtm.uk/dns-over-https-doh-servers

- https://raw.githubusercontent.com/Jigsaw-Code/Intra/master/Android/app/src/main/res/values/servers.xml

- https://raw.githubusercontent.com/dibdot/DoH-IP-blocklists/master/doh-ipv4.txt

- https://raw.githubusercontent.com/dibdot/DoH-IP-blocklists/master/doh-ipv6.txt

- https://raw.githubusercontent.com/crypt0rr/public-doh-servers/main/dns.list

- https://raw.githubusercontent.com/Bryantdl7/pihole-blocklists/main/dns-https-block.txt

- https://raw.githubusercontent.com/jbaggs/doh-intel/master/doh.intel

- https://raw.githubusercontent.com/mili-tan/ArashiDNS.Dekunua/main/DoH.list

- https://ahadns.com/dns-over-https/

- https://adguard-dns.io/kb/general/dns-providers/

- https://raw.githubusercontent.com/unwrapsodding/DOH_Servers/main/hosts

- https://raw.githubusercontent.com/hagezi/dns-blocklists/main/domains/doh.txt

- https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt

- https://raw.githubusercontent.com/akrauze/doh-serverlist-4-pihole/main/list.txt

- https:/ /raw.githubusercontent.com/jsimonetti/public_doh_servers/main/doh_server_domains.list

Feel free to report any other list you find.

The above lists are used to build new lists, containing:

- IP adresses, that can be used on a firewall, always blocked, requires exceptions.

- Response Policy Zone, that can be used with unbound, bind, knot resolver, ... to block

the initial DNS (port 53) query.

- Suricata Rules, to reject the initial DNS (port 53) query.

This process runs daily, the resulting github files will be updated, as soon as a change is

detected.

This document describes what you need to do to use the IP lists on pfsense. If your firewall

doesn’t support this, you might want to add the DoH response policy zone (unbound, bind,

knot resolver, ...) or the suricata rules

3. Pfsense configuration.

https://raw.githubusercontent.com/bambenek/block-doh/master/doh-hosts.txt
https://raw.githubusercontent.com/Sekhan/TheGreatWall/master/TheGreatWall.txt
https://raw.githubusercontent.com/oneoffdallas/dohservers/master/list.txt
https://raw.githubusercontent.com/vysecurity/DoH-Servers/master/README.md
https://raw.githubusercontent.com/tjay/DoH-List/master/hosts
https://raw.githubusercontent.com/flo-wer/doh-list/master/domains.txt
https://raw.githubusercontent.com/wiki/curl/curl/DNS-over-HTTPS.md
https://download.dnscrypt.info/dnscrypt-resolvers/json/public-resolvers.json
https://dtm.uk/dns-over-https-doh-servers
https://raw.githubusercontent.com/Jigsaw-Code/Intra/master/Android/app/src/main/res/values/servers.xml
https://raw.githubusercontent.com/dibdot/DoH-IP-blocklists/master/doh-ipv6.txt
https://raw.githubusercontent.com/crypt0rr/public-doh-servers/main/dns.list
https://raw.githubusercontent.com/Bryantdl7/pihole-blocklists/main/dns-https-block.txt
https://raw.githubusercontent.com/jbaggs/doh-intel/master/doh.intel
https://raw.githubusercontent.com/mili-tan/ArashiDNS.Dekunua/main/DoH.list
https://ahadns.com/dns-over-https/
https://adguard-dns.io/kb/general/dns-providers/
https://raw.githubusercontent.com/unwrapsodding/DOH_Servers/main/hosts
https://raw.githubusercontent.com/hagezi/dns-blocklists/main/domains/doh.txt
https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt
https://raw.githubusercontent.com/akrauze/doh-serverlist-4-pihole/main/list.txt
https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt
https://github.com/jpgpi250/piholemanual/issues
https://jpgpi250.github.io/piholemanual/doc/Unbound%20response%20policy%20zones.pdf

There are different ways to use the IP block lists and IP exceptions lists. Any solution will do,

as long as the result is DoH being blocked, except for the specific devices in the exception

rules.

I use floating rules for all LAN interfaces, except the interface I’m using in my test

environment. I don’t want to define additional rules on the WAN interface, to allow access to

all DoH IPs on the test interface, hence targeting the LAN interface. This document describes

the approach for a single LAN interface.

1. Defining the firewall aliases URLs.

The Github repository contains two relevant files, we need to create URL aliases for each

list. The lists (how to use them will be explained later):

- DOHipv4.txt: This list contains the IPv4 addresses of al DoH servers found in the

lists.

- DOHipv6.txt: This list contains the IPv6 addresses of al DoH servers found in the

lists.

Goto ‘Firewall / Aliases / URL’s’ and click ‘Add’

Create all (two) the aliases (one if you’re not using IPv6), using the data from the table,

ensure type ‘URL Table (IPs)’ is selected, set the update frequency to ‘1’. Feel free to

choose a name, description, the document will use the names from the table.

Name URL
DoHserversIPv4 https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv4/DOHipv4.txt

DoHserversIPv6 https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv6/DOHipv6.txt

The result should look like this (example):

2. Defining the DoH block rules.

https://github.com/jpgpi250/piholemanual
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv4/DOHipv4.txt
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv6/DOHipv6.txt

Goto ‘Firewall / Rules / WAN’ and click ‘Add (rule to the top of the list)

- Action: Block

- Select Quick

- Interface: LAN

- Address Family: Select the correct Address family (list IPv4 or IPv6)

- Protocol: TCP/UDP

- Source: Any

- Destination:

Single host or alias, select the correct alias (DoHserversIPv4 or DoHserversIPv4)

- Destination Port Range: 443

- Optionally, enable logging and enter a comment.

You should now have 2 rules (if you’re using IPv6), the result should look like this (I have

logging enabled, hence the extra icon):

If you have a firewall with multiple LAN ports, you could choose to use floating rules,

allowing a specific adapter to use DoH (for test purposes).

A floating rule has an additional field.

- Direction: any

A floating rule configuration would look like this (the WAN and OPT2 adapter have been

excluded from the rule, this allows me to test DoH on a specific network segment):

3. Defining the exception aliases.

The entries on the list are now blocked, using the above rules. Unfortunately the IP for the

domain doh1.b-cdn.net (example) is the same as the IP for discourse-cdn.pi-hole.net. This

will break the browsing experiance. We need to ensure browsers can load pages that use

content from this IP, whithout simply removing the entry from the list.

Examples of web pages that require an exception:

- discourse.pi-hole.net

- docs.pi-hole.net

- weboost.com

Looking at, for example discourse.pi-hole.net, it’s clear the site uses content from discourse-

cdn.pi-hole.net, which is behind the same IP as doh1.b-cdn.net.

After defining the above block rules, browsing to discourse.pi-hole.net (the pi-hole forum),

the following firewall entries will show up in the log (if logging is enabled).

The IP addresses for doh1.b-cdn.net needs to be included (user responsibility) in the aliases

DOHserverExceptionsIPv4 and DOHserverExceptionsIPv6.

https://discourse.pi-hole.net/
docs.pi-hole.net
https://www.weboost.com/

 The idea is to use these aliases (exceptions) to allow specific devices to bypass the DoH

block rules, defined in the previous section. This disables DoH protection, using the firewall

rules, for the specific devices only.

Previous versions of this manual used predefined exception lists, hosted on GitHub. This

method has been deprecated, due to the excessive growth of these lists, as a result of issues.

Lager environments may be using URL aliases to achieve this, in small environments, the

easiest way to maintain aliases with the IPs of specific devices and exceptions, is to create IP

aliases:

Select ‘Firewall / Aliases / IP’ and click ‘Add’

Create all (four) the aliases, using the data from the table, ensure type ‘Host(s)’ is selected.

Feel free to choose a name, description, the document will use the names from the table.

Name Description
DoHserverExceptionsIPv4 static DoH exceptions IPv4

DoHserverExceptionsIPv6 static DoH exceptions Ipv6

DoHclientExceptionsIPv4 IPv4 hosts, allowed to bypass specific DoH IPv4 entries

DoHclientExceptionsIPv6 IPv6 hosts, allowed to bypass specific DoH IPv6 entries

Add IP addresses and descriptions as needed. You might want to read the section that

explains how to limit the number of exceptions!

Examples of the result:

- IPv4 address of DoH server that should be unblocked for specific clients (evidently, you

need to add additional IP’s that need unblocking – maintain the list)

- IPv4 address of client that should be allowed to use the exception alias (add clients as

required).

https://github.com/jpgpi250/piholemanual/issues

- Example of an IPv4 range

- If you will be using IP host(s) and IP network(s), you’ll need to create separate

aliases and rules, pfsense aliases don’t allow mixing hosts and networks in the

same alias!

-

poisonsnak pointed out here he has defined all the cloudflare address ranges as an

exception, not recommended, but I understand the idea (peace of mind) behind the decision.

More details here.

4. Defining the exception rules.

https://github.com/poisonsnak
https://github.com/jpgpi250/piholemanual/issues/17
https://www.cloudflare.com/ips/

Create the firewall rules to allow specific devices to connect to specific IP’s, port 443

(example dns.cloudflare.com, see above).

Goto ‘Firewall / Rules / WAN’ and click ‘Add (rule to the top of the list)

- Action: Pass

- Select Quick

- Interface: WAN

- Address Family: Select the correct Address family (list IPv4 or IPv6)

- Protocol: TCP/UDP

- Source:

Single host or alias, select the correct alias (DoHclientExceptionsIPv4 /

DoHclientExceptionsIPv6)

- Destination:

Single host or alias, select the correct alias (DoHserverExceptionsIPv4 /

DoHserverExceptionsIPv6)

- Destination Port Range: 443

- Optionally, enable logging and enter a comment.

You should now have 4 rules, 2 allow rules, 2 block rules (if you’re using IPv6). You can

change the order of the rules, by dragging the rule to the desired position (don’t forget to

save, after changing the order). The result should look like this:

Again, if you have a firewall with multiple LAN ports, you could choose to use floating rules.

4. List Updates.

The lists are generated and pushed to GitHub (if there are changes) daily at 04:30 UTC,

pfsense refreshes the content of URL Table IPs aliases, using a cron job.

I have modified this cron job, this to ensure pfsense will be using the updated lists at the

beginning of the workday.

Optionally, install the cron package (System / Package Manager) to change the cron job.

It’s also possible to create a script to force update the lists.

Create a script /root/updatelists.sh and make it executable, content:

/usr/bin/nice -n20 /etc/rc.update_urltables now forceupdate

Selecting option 8 (Shell) on the pfsense console will allow you to execute:

./updatelists.sh

You can verify the successful execution, using the web interface (Status / System Logs /

System / General), you will see something like this (using local copy of the lists).

5. Sqlite3 database.

The lists are generated, using dig replies in my region (Lat.Long 51.2211097,4.3997081).

Unfortunately, some domains (example dns.nextdns.io) resolve into a region dependent IP

address. The IP(s) for nextdns.io, retrieved in my region are thus blocked, but these

addresses may not block DOH in your region. To overcome this problem, and allow users to

generate localized DOH block lists, I have created a database, containing the information,

used to generate the IP lists.

You might want to read section 6 (Network control, using DNS entries). It also contains

information regarding localized replies for the domains mask.apple-dns.net and mask-

t.appledns.net. The files in the GitHub repository (DOHipv4.txt and DOHipv6.txt only contain

relay entries for my region (Lat.Long 51.2211097,4.3997081).

The database can be accessed, using sqlite3 commands (OR pihole-FTL sqlite3), to make life

easier, take a look at my pi-hole manual, section 26/3 (Browsing the FTL database). You’ll

need to make some changes in /var/www/html/phpliteadmin.config.php, this to include the

new database. A script to install this on Raspberry Pi OS Lite can be found here.

1. Tables

- info:

o version: If you’re going to write a script to build your own lists, ensure to verify

the database version. The version may change, as I’m still trying to improve the

quality of the resulting lists.

o latest_timestamp: used to identify entries that are added or updated during the

last run (daily).

- urllist: contains the url of the source lists, see DOH lists. Every list has an id, used to

identify the list. The “num_domains” column contains the number of entries, read

from the list. The timestamp indicates when the last change to the list was detected.

A ‘null’ value indicates there has been no change since the list was added.

- domainlist: contains all of the domains found in all of the lists, which implies there are

duplicates. Example: the domain “dns.adguard.com” is found in 11 lists, thus has 11

domainlists entries. See query examples to retrieve this info.

However, the unique_id will be equal for all entries.

Every entry also has a timestamp, which is updated, whenever the lists are processed

(daily). If a domain is no longer on a source list, the timestamp will NOT be updated.

Several methods are used to extract the domains from the source lists (different

format such as plain text, csv, html, json, …). As a result, some domains need to be

excluded from the list. Example: “github.com” is mentioned on several html pages,

this domain will thus be excluded (not added to the database). Another example:

“meganerd.nl” is a valid domain, the DOH server (“chewbacca.meganerd.nl”,

according to the lists) has a different IP address. Thus, “meganerd.nl” is excluded (not

added to the database), “chewbacca.meganerd.nl” is included.

- cnameinfo: every unique domain entry is processed (dig), this to retrieve IP

addresses. Some of the list entries are actually CNAMEs. Example: the lists contain an

entry “adblock.lux1.dns.nixnet.xyz”. This is actually a cname for “lux1.nixnet.xyz”. This

https://github.com/jpgpi250/piholemanual/blob/master/DOH/DOH.db
https://github.com/jpgpi250/piholemanual
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv4/DOHipv4.txt
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/ipv6/DOHipv6.txt
https://jpgpi250.github.io/piholemanual/doc/Block%20Ads%20Network-wide%20with%20A%20Raspberry%20Pi-hole.pdf
https://www.raspberrypi.org/software/operating-systems/
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/phpliteadmin.sh

information is stored in the cnameinfo table. Be aware the cnameinfo table does NOT

contain the CNAME(s), only the relevant info, as a result from the DNS query.

The domainlist_id points to the entry in the domainlist table.

The timestamp is updated every time the lists are processed (daily). If a DNS query no

longer returns this info, the timestamp will NOT be updated.

2. Query examples

I’m NOT a database expert, so there may be room for improvement… Some examples, I

use, to get relevant information from the database. The examples are formatted to be

used in a bash script (#!/bin/bash).

You need to change the location of the database to reflect the actual location.

- Get last detected list change date (‘null’ implies no change since the list was first

added)

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

“SELECT address, date(timestamp, 'unixepoch') FROM urllist;"

- Get list(s) that contain specific domain:

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT address, domain FROM 'domainlist' \

INNER JOIN 'urllist' ON urllist.id = domainlist.urllist_id \

WHERE domainlist.domain = 'dns.adguard.com';"

- Get domains for a specific CNAMEinfo entry

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT domain, urllist_id, cname_domain, unique_id FROM 'cnameinfo' \

JOIN 'domainlist' ON domainlist_id = domainlist.unique_id \

WHERE cnameinfo.cname_domain = 'lux1.nixnet.xyz.';"

- Get unique domains

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT DISTINCT domain FROM 'domainlist';"

OR, using the ‘latest_timestamp’ value (only list the domains detected in

the last version of the source lists):

sudo sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT DISTINCT domain FROM 'domainlist' \

WHERE domainlist.timestamp = \

(SELECT value FROM info \

WHERE property = 'latest_timestamp');"

This query result can be used to generate a custom pi-hole list. Redirect

the output to a file, a new local pi-hole blocklist, thus:

sudo sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT DISTINCT domain FROM 'domainlist' \

WHERE domainlist.timestamp = \

(SELECT value FROM info \

WHERE property = 'latest_timestamp');" \

| sudo tee /var/www/html /DOHdomains.txt

Add a local pi-hole list (Group Management / Adlists), do NOT include the

quotes:

- “http://localhost/DOHdomains.txt”

OR

- “file:///var/www/html/DOHdomains.txt”

Pi-hole users can check if any of their clients has submitted a DNS query to

pi-hole by executing the following query, you don’t have to use the

proposed blocklist to run this query:

sqlite3 "/home/pi/DOH/sqlite3/DOH.db" \

"ATTACH database '/etc/pihole/pihole-FTL.db' as 'FTLdb'; \

SELECT DISTINCT domainlist.domain, queries.client \

FROM domainlist \

JOIN FTLdb.queries ON domainlist.domain = queries.domain;"

Ideally, this would return an empty result. I’ve been testing a lot on both

my pi and workstation, my (partial) result looks like this:

adblock.lux1.dns.nixnet.xyz|127.0.0.1

adblock.lux1.dns.nixnet.xyz|192.168.2.228

chewbacca.meganerd.nl|127.0.0.1

chewbacca.meganerd.nl|192.168.2.227

doh.captnemo.in|127.0.0.1

doh.captnemo.in|192.168.2.228

lux1.nixnet.xyz|127.0.0.1

- Get unique domains, display all fields

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT * FROM ‘domainlist’ group by domain;"

- Get unique domains, display all fields, order by specific field

sqlite3 /home/pi/DOH/sqlite3/DOH.db \

"SELECT * FROM ‘domainlist’ \

GROUP BY domain \

ORDER BY unique_id;"

6. Network control, using DNS entries.

Unfortunately, some lists already contain entries for domains that should NOT be blocked.

These domains are used for controlling the use of DoH on a network level. If the DNS queries

are not answered correctly (NXDOMAIN), blocking them will cause delays.

1. Firefox canary domain.

Firefox has provided a method to prevent the browser from using DoH.

In order to ensure the browser doesn’t use DoH, you should ensure the DNS query for

the domain use-application-dns.net is answered with NXDOMAIN.

In the latest pi-hole version, the reply for this domain is hardcoded, so no additional

action is needed.

If you don’t use pi-hole and the DNS reply for this domain (dig use-application-dns.net)

isn’t NXDOMAIN, you can:

- Use dnsmasq to ensure the query is answered correctly, by adding a dnsmasq

configuration line:

server=/use-application-dns.net/

- Use unbound to ensure the query is answered correctly, by adding unbound

configuration lines:

server:

 local-zone: "use-application-dns.net." always_nxdomain

2. iCloud Private Relay.

Apple uses an implementation of oDOH (oblivious DoH), this to increase privacy. When

enabled (default), the system no longer uses the configured DNS server(s), provided by

DHCP. Apple has provided a method to ensure users get a warning. The user than needs

to disable the use of iCloud Private Network for the network he is connected to.

Example, warning for WLAN (NXDOMAIN reply for the domain(s) received), the user

needs to select “Use without Private Relay”, this to avoid using oDoH (icloud Private

Relay).

https://support.mozilla.org/en-US/kb/configuring-networks-disable-dns-over-https
https://thekelleys.org.uk/dnsmasq/doc.html
https://nlnetlabs.nl/projects/unbound/about/
https://www.ietf.org/staging/draft-pauly-oblivious-doh-02.html
https://developer.apple.com/support/prepare-your-network-for-icloud-private-relay

In order to ensure the system does warn the user about iCloud Private Relay(s) (oDoH),

you should ensure the DNS queries for the domains mask.apple-dns.net and mask-

t.appledns.net are answered with NXDOMAIN.

In the latest pi-hole version, the reply for these domains is hardcoded, so no additional

action is needed.

If you don’t use pi-hole and the DNS reply for these domains isn’t NXDOMAIN, you can:

- Use dnsmasq to ensure the queries are answered correctly, by adding dnsmasq

configuration lines:

server=/mask.icloud.com/

server=/mask-h2.icloud.com/

- Use unbound to ensure the queries are answered correctly, by adding unbound

configuration lines:

server:

 local-zone: "mask.icloud.com." always_nxdomain

 local-zone: "mask-h2.icloud.com." always_nxdomain

The normal response (not yet changed to NXDOMAIN) for the above domains is localized,

the response contains the addresses of the local available relays, the system will use,

different for each region. If you want to ensure the relays in your region are blocked,

https://thekelleys.org.uk/dnsmasq/doc.html
https://nlnetlabs.nl/projects/unbound/about/

using the firewall rules, you need to generate the IP lists yourself, using the database, see

section 5 (Sqlite3 database). A list of all relays can be found here.

7. DoH response policy zone.

Not all firewalls are capable of implementing this. To provide protection for (o)DoH, the

domains are added to the rpz file, can be used to ensure unbound (bind and knot resolver

also support this – not tested) returns an appropriate response for these domains. More on

this in this document. As an alternative, if possible, you can use suricata to reject queries for

(o)DoH domains, see here.

It may be wise to implement the RPZ feature, even if your firewall is configured as described

in this document. You probably already have created the exception aliases and rules, this to

ensure the websites, using resources from the same IP as a known DoH server, are

accessible. A client / app may be attempting to use DoH, due to the exceptions this may

work. The domain entry in the RPZ provides protection, if the client uses your DNS server to

get the IP for the DoH server.

The unbound documentation for response policy zones can be found here.

8. Cloudflare addresses.

Unfortunately, some DoH servers are hosted on cloudflare, the IP address can change over

time. This makes it harder to maintain exception lists. You can use grepcidr to determine if

an IP address is part of a CIDR network.

The cloudflare CIDR ranges can be found here, IPv4 and IPv6.

A simple bash script can be used to determine if an IP address is a cloudflare address, provide

the IP to test as script parameter (reference here)

- Result is IP -> part of cloudflare CIDR.

- No Result -> NOT part of cloudflare CIDR.

Example IPv4:

#!/bin/bash

IPv4cidr=""

while read -r network; do

 IPv4cidr="${IPv4cidr} ${network}"

done < <(wget -qO - https://www.cloudflare.com/ips-v4 2>&1 && echo "")

grepcidr "${IPv4cidr}" <(echo "$1")

Assuming you have a local copy of the IP bloclist(s) (from github) and the cloudflare CIDR

lists, you can use the folowing command to list all IP addresses in the cloudflare CIDR

networks. Example Ipv4 (add -c to get only the count.):

grepcidr -f /home/pi/ips-v4 /var/www/html/DOHservers/DOHipv4.txt

https://github.com/jpgpi250/piholemanual/blob/master/DOH/DOH.db
https://mask-api.icloud.com/egress-ip-ranges.csv
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rpz
https://jpgpi250.github.io/piholemanual/doc/Unbound%20response%20policy%20zones.pdf
https://unbound.docs.nlnetlabs.nl/en/latest/topics/filtering/rpz.html
https://manpages.debian.org/stretch/grepcidr/grepcidr.1.en.html
https://www.cloudflare.com/ips/
https://www.cloudflare.com/ips-v4
https://www.cloudflare.com/ips-v6
https://unix.stackexchange.com/questions/274330/check-ip-is-in-range-of-whitelist-array

9. Limiting the number of exceptions.

Some DoH servers are hosted by external providers who use cidr addresses. The address,

returned, changes regularly. When using the online DNSchecker on the domain docs.pi-

hole.net, you’ll notice different addresses. When using DNSquery (enter the IP address in the

IP Whois Query box), you can see the (google) CIDR range. Without additional configuration,

this would imply you’ll need to add exceptions for all the addresses, returned (The address

even changes within a region).

You can overcome this by configuring unbound (specific syntax for other resolvers not listed)

with a redirect assignment for docs.pi-hole.net

server:

 local-zone: "docs.pi-hole.net." redirect

 local-data: "docs.pi-hole.net. A 34.159.132.250"

 local-data: "docs.pi-hole.net. AAAA 2a05:d014:275:cb01:8909:43f0:2069:7b77"

Domains, using CNAME entries might require additional configuration entries, example, the

domain discourse-cdn.pi-hole.net requires:

server:

 local-zone: "discourse-cdn.pi-hole.net." redirect

 local-data: "discourse-cdn.pi-hole.net. A 185.93.2.248"

 local-data: "discourse-cdn.pi-hole.net. AAAA 2400:52e0:1e02::932:1"

 local-zone: "b2discourse.pi-hole.net." redirect

 local-data: "b2discourse.pi-hole.net. A 185.93.2.248"

 local-data: "b2discourse.pi-hole.net. AAAA 2400:52e0:1e02::932:1"

 local-zone: "b2discourse.b-cdn.net." redirect

 local-data: "b2discourse.b-cdn.net. A 185.93.2.248"

 local-data: "b2discourse.b-cdn.net. AAAA 2400:52e0:1e02::932:1"

The above unbound configuration implies you only need to create an exception for a single

IPv4 and IPv6 address per domain, eliminating the need to add exceptions, due to ever

changing addresses.

The down side of this method is, of course, the website may migrate to another provider,

which will require reconfiguration.

10. CIDR (network) Exceptions.

If the above solution isn’t an option, you’ll need to create exceptions for an address range.

Example, creating a cidr (network) exception for discourse.pi-hole.net:

https://dnschecker.org/
https://dnsquery.org/

 ‘dig +short discourse.pi-hole.net’ will return a single address (52.14.183.198). The address

will probably be different when you try it, the address changes regularly, thus creating an IP

address exception for this domain may work for a while, once the address changes, your

exception won’t work anymore.

To determine the required cidr (network) exception you need to prevent this from happening

(example), use a browser to retrieve the info (IP address from the dig result:

https://api.bgpview.io/ip/52.14.183.198

The result:

{"status":"ok","status_message":"Query was

successful","data":{"ip":"52.14.183.198","ptr_record":"discourse.pi-

hole.net","prefixes":[{"prefix":"52.14.0.0\/16","ip":"52.14.0.0","cidr":16,

"asn":{"asn":16509,"name":"AMAZON-02","description":"Amazon.com,

Inc.","country_code":"US"},"name":"AT-88-Z","description":"Amazon

Technologies

Inc.","country_code":"US"}],"rir_allocation":{"rir_name":"ARIN","country_co

de":null,"ip":"52.0.0.0","cidr":10,"prefix":"52.0.0.0\/10","date_allocated"

:"1991-12-19

00:00:00","allocation_status":"allocated"},"iana_assignment":{"assignment_s

tatus":"legacy","description":"Administered by

ARIN","whois_server":"whois.arin.net","date_assigned":null},"maxmind":{"cou

ntry_code":null,"city":null}},"@meta":{"time_zone":"UTC","api_version":1,"e

xecution_time":"242.03 ms"}}

In order to ensure discourse.pi-hole.net will always work, you’ll need to create an exception

alias:

And create a firewall rule to allow these cidr (network) exceptions. Make sure the rule is

above the block rule (order). Screenshot is an implementation of floating rules.

11. DOH Suricata rules.

Not all firewalls are capable of implementing this. To provide protection for (o)DoH, the

domains are added to the suricata rules file, can be used to ensure suricata rejects DNS

queries for these domains. These rules should be used only when using Inline IPS Mode. Only

Inline IPS Mode can selectively drop packets. Legacy Mode will block ALL traffic to / from

the target IP address, this may likely not what you want. As an alternative, if possible, you

can use response policy zones (RPZ) to block queries for (o)DoH domains, see here.

It may be wise to implement the suricata rules, even if your firewall is configured as

described in this document. You probably already have created the exception aliases and

rules, this to ensure the websites, using resources from the same IP as a known DoH server,

are accessible. A client / app may be attempting to use DoH, due to the exceptions this may

work. The suricata rules provides protection, if the client uses standard (port 53) DNS queries

to get the IP for the DoH server.

In order to add these rules to suricata (pfsense screenshots):

- Services / Suricata / Global Settings:

o Check “Download Extra Rules”

o Add the Extra Rules “Name” and “URL”, use (check) “MD5”, save (bottom of page)
Name: DOH

URL: https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rules

- Services / Suricata / Updates:

o “Update your rule set”, click the “Update” button.

o The result, after the download (MD5 checksum changes every day):

- Services / Suricata / Interface

https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rules

The new rules need to be applied to the WAN interface, due to the “source”

($HOME_NET), “target” ($EXTERNAL_NET) and “flow” (to_server) definitions in the rules.

o Click on the “pencil” icon (Edit this Suricata interface mapping)

o Interface Tab “WAN Categories”, scroll to the bottom of this page and check

“extrarule-DOH.rules”

o Save, A message will appear (top of screen)

- Verify the rules: Interface Tab / “WAN Rules”, select “extrarule-DOH.rules”, you should

see something like this (screenshot).

- There are no “default disabled” rules, therefore, the rules should be active immediately.

Be aware that “Enable All” can be wasteful of config.xml space, read here (explained by

the experts).

You can also check “Active Rules” (WARNING: this takes a long time, press the “SID”

header to change the order).

- Verify everything works, run (example) “dig dns9.quad9.net”

- Services / Suricata / Alerts

https://forum.netgate.com/topic/175664/suricata-o-doh-rules/19

12. Adblock Plus.

The next pi-hole release (already merged into development) will support Adblock Plus style

lists.

Example entry: ||1111.cloudflare-dns.com^

Be aware subdomains are also blocked when using pi-hole.

The DoH domain list is been made available in this format, you can find the list here.

13. Change Log.

16-06-2020

- Initial release.

11-07-2020

- Added list from Alphabet's Intra app, ref GitHub issue 4.

17-01-2021

- Entries from the existing (previous version) lists are only kept if the IP can be resolved,

using the OpenDNS resolvers.

09-02-2021

- Removed list from heuristicsecurity.com (https://heuristicsecurity.com/dohservers.txt),

this URL is redericted to a non-DoH related page.

- Added Lists from https://github.com/dibdot/DoH-IP-blocklists, ref GitHub issue 8.

28-02-2021

- Added the database to the GitHub repository.

01-03-2021

- Added the ‘latest_timestamp’ property (info table).

- Added query example to use the ‘latest_timestamp’ value.

- Additional info for pi-hole users.

29-03-2021

- Added ‘timestamp’ field to ‘urllist’ table, this to identify unmaintained lists. A ‘null’

value indicates the list hasn’t changed, since the list was added.

- Added query example to show human readable list change date.

- Increased database version (new field).

10-04-2021

- Increased database version (3).

20-09-2021

https://github.com/pi-hole/FTL/pull/1532
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOHadb.txt
https://play.google.com/store/apps/details?id=app.intra
https://github.com/jpgpi250/piholemanual/issues/4
https://heuristicsecurity.com/dohservers.txt
https://github.com/dibdot/DoH-IP-blocklists
https://github.com/jpgpi250/piholemanual/issues/8

- Added List:

 https://raw.githubusercontent.com/crypt0rr/public-doh-servers/main/dns.list.

01-10-2021

- Added section Network control, using DNS entries.

21-12-2021

- Removed 0.0.0.0 and :: entries (return value for dns.dnsoverhttps.net).

- Added automatic cleanup of database cnameinfo entries.

02-01-2022

- Added section DoH response policy zone.

- Daily updated DOH.rpz on Github.

02-08-2022

- Added new lists:
https://raw.githubusercontent.com/jbaggs/doh-intel/master/doh.intel

https://raw.githubusercontent.com/mili-tan/ArashiDNS.Dekunua/main/DoH.list

05-08-2022

- Database version 4, the exceptions table has been removed.

- The exceptions files will no longer be updated, it is the users responsibility to maintain

the exception aliases. This is due to the ever growing list of exceptions, as a result of

issues. The exception files are considered decrepated, but will remain on GitHub, to

prevent problems with older implementations.

- Added instructions and examples to add and maintain user exception aliases.

07-08-2022

- Added new list (thanks, poisonsnak):
https://ahadns.com/dns-over-https/

This list can only be retrieved (if DoH protection is already in place) using:

retrieve regional addresses below (A & AAAA) from https://dns-lookup.com/ahadns.com

curl --resolve *:443:104.26.2.137,2606:4700:20::681a:289 https://ahadns.com/dns-over-https/"

The list is added to ensure the ahadns.com entries will remain blocked, even if removed

from other lists.

13-08-2022

- Added Cloudflare CIDR information.

24-09-2022

- Added section, explaining how to limit the number of exeptions.

13-11-2022

https://raw.githubusercontent.com/crypt0rr/public-doh-servers/main/dns.list
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rpz
https://github.com/jpgpi250/piholemanual
https://raw.githubusercontent.com/jbaggs/doh-intel/master/doh.intel
https://raw.githubusercontent.com/mili-tan/ArashiDNS.Dekunua/main/DoH.list
https://github.com/poisonsnak
https://ahadns.com/dns-over-https/

- Added DOH Suricata rules.

- Added warning Inline IPS Mode / Legacy Mode (ref. comment(s) from bmeeks – thanks

for this, highly appreciated).

28-11-2022

- Added new list:
https://adguard-dns.io/kb/general/dns-providers/

This list can only be retrieved using:

lynx -dump "https://adguard-dns.io/kb/general/dns-providers/"

30-11-2022

- Added section, explaining how to add CIDR (network) Exceptions.

14-12-2022

- Increased suricata sid allocation (27990000-27999999), due to the large amount of new

entries, see the sid allocation table here.

01-01-2023

- Increased database version (5).

Added field “num_domains” to “urllist” table.

- Added new list:
https://raw.githubusercontent.com/unwrapsodding/DOH_Servers/main/hosts

15-02-2023

- Added new list:
https://raw.githubusercontent.com/hagezi/dns-blocklists/main/domains/doh.txt

26-02-2023

- Fixed reported typos, see issue, thanks teamits.

15-03-2023

- Added Adblock Plus formatted DoH list.

- Added new list:
https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt

19-05-2023

- Added new lists:
https://raw.githubusercontent.com/akrauze/doh-serverlist-4-pihole/main/list.txt

https://raw.githubusercontent.com/jsimonetti/public_doh_servers/main/doh_server_domains.list

01-01-2024

- Increased database version (6).

- Removed all expired domainlist (database) entries.

- Changed value assignment of unique_id field (database) to allow matching sid in the

suricata list.

https://forum.netgate.com/topic/175664/suricata-o-doh-rules/17
https://forum.netgate.com/user/bmeeks
https://adguard-dns.io/kb/general/dns-providers/
https://sidallocation.org/
https://raw.githubusercontent.com/unwrapsodding/DOH_Servers/main/hosts
https://github.com/jpgpi250/piholemanual/issues/22
https://github.com/teamits
https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt
https://raw.githubusercontent.com/akrauze/doh-serverlist-4-pihole/main/list.txt
https://raw.githubusercontent.com/jsimonetti/public_doh_servers/main/doh_server_domains.list
https://www.digitalocean.com/community/tutorials/understanding-suricata-signatures#the-sid-and-rev-keywords

10-03-2024

- Added new list:
https://raw.githubusercontent.com/Bryantdl7/pihole-blocklists/main/dns-https-block.txt

07-06-2024

- Removed list:
https://raw.githubusercontent.com/tjay/DoH-Servers/master/hosts

- Added new list:
https://raw.githubusercontent.com/jameshas/Public-DoH-Lists/main/lists/doh_domains_plain.txt

26-07-2024

- Removed all expired domainlist (database) entries.

- Removed the IP addresses from IP block lists for (o)DoH entries that use an alternate

port (list 15). The domain entries remain listed (pi-hole, rpz and suricata).

25-06-2025

- Moved the file DOH.rpz to the DOH folder (GitHub repository).

- Added IP lists for the individual source files, see IPv4 and IPv6 folders.

26-06-2025

- Moved remaining DOH files to (sub)folders .

https://raw.githubusercontent.com/beamrod/doh_hostlist/main/host_list.txt
https://raw.githubusercontent.com/tjay/DoH-Servers/master/hosts
https://raw.githubusercontent.com/jameshas/Public-DoH-Lists/main/lists/doh_domains_plain.txt
https://raw.githubusercontent.com/jbaggs/doh-intel/master/doh.intel
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOHadb.txt
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rpz
https://raw.githubusercontent.com/jpgpi250/piholemanual/master/DOH/DOH.rules
https://github.com/jpgpi250/piholemanual/blob/master/DOH/DOH.rpz
https://github.com/jpgpi250/piholemanual/tree/master/DOH/ipv4
https://github.com/jpgpi250/piholemanual/tree/master/DOH/ipv6

